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Modern Theories of Liquids and the Diffuse Equatorial X-ray Scattering from Collagen 
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The idea that the lateral arrangement of a proportion of molecules in the collagen fibril displays a short- 
range two-dimensional liquid-like order is investigated and shown to be true. Theoretical calculations 
of a dense disordered assembly of hard discs yield X-ray scattering curves which possess the features 
of the near equatorial diffuse scattering from rat-tail tendon collagen. The theoretical model used is the 
integral equation formulation of Percus & Yevick [Phys. Rev.(1958). 110, 1] known to be almost 
exact for hard-disc potentials. The molecular diameter and number density of molecules obtained from 
the comparison with experiment are close to those suggested by Woodhead-Galloway, Hukins & Wray 
[Biochem. Biophys. Res. Commun. (1975). 64, 1237-1244] to explain the ordered part of the collagen and 
to those suggested by Katz & Li [J. Mol. Biol. (1973). 73, 351-369] on the basis of an investigation of 
the density of wet tendon. A brief discussion of elastoidin is included. Discrepancies between the 
observed and predicted scattering are discussed. 

1. Introduction 

A short-range order similar to that supposed to be 
characteristic of liquids seems to be a feature of the 
distribution of structural units, molecules, microfibrils, 
crystallites, etc., in a number of animal and plant con- 
nective and skeletal tissues. Two differences may be 
noticed, however, between the local order displayed 
in the two sorts of situation; liquids are fluid - a con- 
sequence of their irregularity - whereas it seems that 
the tissues are static, at least in this respect. Second, 
structural tissues are usually fibrous, being relatively 
well ordered (although not always) in the axial direc- 
tion - the short-range order refers to the lateral ar- 
rangement of molecules or groups of molecules, [the 
analogy with liquid crystals has been drawn in some 
examples (e.g. Neville & Luke, 1971)] so that one has 
in essence 'planar liquids'. Blaisie & Worthington 
(1969) suggested the idea of a planar liquid to account 
for X-ray observations of the distribution of retinal 
pigment in the eye of the frog, although Fraser, Mac- 
Rae, Miller & Suzuki (1964) had considered it in a 
more structural context for the distribution of c~- 
keratin microfibrils in the matrix, and more recently a 
similar point has been made for the distribution of 
chitin crystallites in insect skeletons (Neville, Parry & 
Woodhead-Galloway, 1976). In both the last two 
situations the actual distribution is visualizable directly 
using the electron microscope. Situations where short- 
range order has been proposed but the evidence for it 
is again X-ray diffraction and not so readily inter- 
pretable, are the collagens of rat-tail tendon (Burge, 
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1965; Hoseman, Dreissig & Nemetschek, 1974; 
Nemetschek & Hoseman, 1973) and dogfish-fin elas- 
toidin (Woodhead-Galloway & Knight, 1975). 

Since good quantitative theories of liquids have been 
proposed over the last decade or so, it is tempting to 
borrow these to account for the near-equatorial diffuse 
scattering that provides the basis of the suggestion in the 
collagens. There are, of course, the two drawbacks allu- 
ded to above. The two situations are not quite the same. 
The first, though the more serious in principle, is easily 
met by the ergodic theorem with its assertion that time 
and space averages are the same, and, of course, Bernal 
(1964) has proposed excellent static models of liquids. 
The second is a trivial point theoretically, but presents 
some technical difficulties. The two-dimensional prob- 
lem of liquid-like disorder is more formidable that 
either the three- or one-dimensional problems (Row- 
linson, 1964). 

2. The theoretical approach 

Modern theories of liquids presume that they are like 
dense gases rather than disordered crystals in the way 
that they scatter X-rays. That is not to say that the 
scattering they predict does not have some crystal-like 
features, but the power of the methods is that these 
features arise in the course of calculation rather than 
being introduced in an ad hoe way. Indeed, it might be 
claimed that such theories are the one area where 
structure has been succesfully predicted on the basis 
of potential-energy functions. 

For the purposes of accounting for X-ray diffraction 
results, we may take it that the radial distribution 
function is a sufficient description of a liquid (although 
it does not necessarily define a statistical structure 
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unambiguously which requires a complete set of 
multiparticle correlation functions). It is customary to 
write the pair distribution function, F12, which is the 
probability density function for finding two molecules 
simultaneously a distance r apart in the liquid as 

F12=n2g(r) , (2.1) 

where no is the molecular number density and g(r) the 
radial distribution function, and Zernike & Prins 
obtained the formula for the X-ray interference 
function S(k), usually called the structure factor in 
work on liquids, describing the scattering by such a 
distribution of molecules as 

S(k)= 1 +no I [g ( r ) -  1] exp (ik. r)dr. (2.2) 

The term in brackets is often called the 'total correla- 
tion function' and represents deviations from the 
average density of the liquid. The total scattering 
from the liquid I(k) is written, as is well known 

l(k)/Nlo =f2(k)S(k) , (2-3) 

where f(k) is the Fourier transform of the electron 
distribution of the molecule, I0 is the incident intensity 
and N the total number of scatterers. 

Notice that crystallographers use the term 'structure 
factor' differently as the square root of a reflexion's 
intensity and that they usef(k) as the form factor for an 
atom. 

Present-day theoretical work on liquids has often 
attempted to calculate g(r) using as parameters the 
intermolecular potential-energy function V(r), tem- 
perature KBT and density no. They are fundamental 
theories in that they begin explicitly or implicitly with 
the partition function following the work of Mayer. 
(For a review of Mayer's work see Salpetre, 1958.) 
From the radial distribution function the X-ray 
scattering can then be calculated. Since, however, the 
experimental quantity is I(k), or, if sufficient is known 
about f(k), it may be S(k), and since it is inordinately 
difficult to obtain accurate estimates of g(r), for 
example, because the observable data is limited, there 
seems on the whole little point in calculating g(r) and 
then calculating the diffraction intensity. It is more 
elegant and economical to find a theory of S(k) and use 
it directly for comparison, and, indeed, there are many 
real advantages in doing so (Woodhead-Galloway, 
1968; Woodhead-Galloway, Gaskell & March, 1968). 

A simple theoretical model, conceptually, which 
lends itself to the above approach and has provided 
the basis of understanding diffraction results for simple 
inert gases, and to some extent for liquid metals, is 
the integral equation formulation of Percus & Yevick 
(1958) (see also Lebowitz & Percus, 1966) based on 
Ornstein & Zernike's (1914) direct correlation function 
and employing the hard-sphere potential 

V(r) = + c~ r < 2R, the molecular diameter 
= 0 r > 2R.  (2.4) 

This model has the attractive feature that it allows im- 
mediately, though not easily, in three dimensions (and 
one) a calculation of S(k) in closed form in terms of 
simple trigonometric functions (Thiele, 1963; Wert- 
heim, 1963). It has the added advantage that at a 
realistic density it provides an almost exact description 
of the scattering for the potential given in (2.4). A 
further advantage for calculation using such a poten- 
tial is that only one real parameter, the packing frac- 
tion r/=nonR3/6, is involved. The molecular radius, R, 
enters calculation explicitly only as a trivial scaling 
factor. The temperature does not enter at all. The 
success of such a simple model in accounting for dif- 
fraction observations in real liquids seems to be that 
at the high densities encountered in liquids the struc- 
ture is dominated by the packing of the impenetrable 
molecular cores, the 'hard spheres' of the model, and 
any long-range attractive parts in the potential, such as 
dispersion forces, serve only as a minor perturbation 
on the structure (Woodhead-Galloway et al., 1968). In 
view of the success and manifest advantages for calcu- 
lation of the approach, it is the one we shall employ 
here. However, since the problem is one of irregularity 
in two dimensions, the model is, of course, one for an 
assembly of "hard discs' rather than spheres. Both in 
collagen and elastoidin the molecules are arranged 
almost parallel to the fibre axis. There seems to be 
some tilt, but it is small - a few degrees at most. In a 
first approximation the tilt will be ignored. In projec- 
tion down the axis the molecules may, with some 
reservations, be regarded as discs, and the problem of 
the lateral packing one of the local order of an as- 
sembly of 'hard discs'. There is, of course, in rat-tail 
tendon, though not in elastoidin, X-ray evidence that 
part of the collagen exists with long-range lateral order 
(see Woodhead-Galloway, Hukins & Wray, 1975, for 
a possible interpretation), but we shall also ignore this 
feature. 

3. Calculations 

As was remarked earlier, two-dimensional problems 
of disorder are troublesome, and no closed-form solu- 
tion has yet been shown to exist for the Percus-Yevick 
equation even for the simple hard-disc potential. How- 
ever, recently, the structure factor S(k) has been cal- 
culated for the model by Machin & Woodhead-Gal- 
loway (1975) with an eye to the sort of problem dis- 
cussed here, and those results will be employed. The 
method used was to find a series solution to the Percus- 
Yevick equation using the packing fraction as an ex- 
pansion parameter (a customary approach). Relatively 
good convergence of the series which finally employed 
eight terms was found up to a density of about ~ that 
of closest packing (r/=0.9069). It was felt that at the 
moment further calculations along these particular 
lines are not warranted; the returns for the effort are 
small. Some further information was elicited by inter- 
polating between the maximum value calculated and 
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that  of  closest packing. The calculations were of struc- 
ture factors which are the quantities readily available 
f rom the Percus-Yevick (and direct correlation func- 
tion appraoches generally). Total intensities I(k) were 
calculated by assuming the molecule to have uniform 
electron density so that 

f ( k )  = 2nRJl(kR )/k , (3.1) 

where k=2n/d,  d being measurements  in reciprocal 
space converted to distance in real space. 

4. Resu l t s  and compar i son  with e x p e r i m e n t  

Fig. 1 shows structure factors S(k) calculated for a 
number  of  values of the packing fraction 1/. Fig. 2 
shows the total intensity l(k) for a system with a 
packing fraction of 0.236 using 2.3 and 3.1. A first 
m a x i m u m  can just  be resolved, and its position cor- 
responds to a value of  d/2R of about  2.5. Fig. 3 shows 
that at higher densities the peak is better resolved and 
moves towards the value expected for the (1,0) reflex- 
ion of  a hexagonally close-packed lattice where d/2R 
=1/3/2=0.866.  Table 1 shows the calculated variation 
in position of the first peak with packing fraction. 
The value at r /=0.7854 (equivalent to tetragonal pack- 
ing) was found by interpolat ion since our calculated 
series does not contain enough terms to ensure good 
convergence much  above r/=0.6.  

Table 1. Position of  the first peak in S(k) and I(k) 
given as the ratio d/2R for a number of  values of  the 

packing fraction r 1 and also measured in nm based 
on a value of  2R = 1.18 nm (see § 5) 

The value for r/= 0.9069 (hexagonal close packing) is I/~-. The 
value for r/= 0.7854 (tetragonal packing of hard discs) is found 

0-236 
0-392 
0.608 
0-785 
0"907 

0"4 

d]2R for 
position 
of the 

first peak 
in S(k) 

1"17 
1"13 
1.05 

~0.9 
0.866 

by interpolation. 

d in nm d in nm 
d/2R for for posi- for posi- 
position tion of tion of 
of the first peak first peak 

first peak in S(k) in l(k) 
in I(k) 2R= 1-18nm 2R= 1-18nm 
2"5 1"38 2"95 
1"43 1"33 1"69 
1"10 1.24 1"30 

~ 0"9 ~ 1 "09 ,-, 1 "09 
0"866 1"02 1.02 

In Fig. 4 a comparison is made of  the theoretical 
l(k) with the diffuse intensity distribution on the 
equator of  the collagen diffraction pattern. 

Matching of the patterns was performed by fitting 
the height and position of  the first peak in the inten- 
sities and finding a value of r / tha t  gave a reasonable 
fit with the shape of the experimental  curve. The best 
fit yields a value of  r /o f  0.608 and a value of 2R of 1.18 
n m  (the experimental  peak is at d =  1.3 nm and d/2R 
theoretically at r /=0.608 is 1.1). The theoretical curve 
seems to give a good account of  experiment except 
near the origin (see below), and the values of the param- 

eters derived from experiment fit in quite well with 
other observations (also see below). 

The differences between theory and experiment are 
of two sorts. First, there are peaks superposed on the 

i 

3"0 
S(k) 

2"0 . i  

1"0 

0"5 1 1"5 2"0 2"5 
2R/d 

Fig. 1. The structure factor or interference function S(k) cal- 
culated for different va]ues of the packing fraction 
1 . . . . . .  t/=0.236, 2 . . . . . . .  r/=0.392, 3 r/ 0.608. 

0"24 

0"32 
/tk) 

~Wo(WR2)= 

0"2Z 

01( 

0"08 

0"5 1"0 1"5 

Fig. 2. Total scattering curve I(k)oc4(7~R) 2 j2(kR) S(k)/k 2 
for packing fraction r/= 0.236. The first peak in the function 
is just resolved and is at a value in reciprocal space given 
by 2foR~d= ~z/2-5, i.e. d/2R=2.5. 

..,'"'"'"' 
0"16 

t(kJ_ 
NI~C-S--~5 ~ 

0"08 

370 D I F F U S E  E Q U A T O R I A L  X - R A Y  S C A T T E R I N G  F R O M  C O L L A G E N  

0"5 1"0 1"5 2"0 

2Rid 

Fig. 3. As Fig. 2, but at higher values of the packing fraction 
. . . . . . .  q=0.392, - -  q=0.608. The first peak in I(k) 
is becoming more pronounced as r/ becomes larger and is 
moving outwards (towards smaller values of d). 
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experimental diffuse scatter at 1.26 and 1.75 nm (and 
perhaps near 2.5 nm). These refer to the ordered phase 
of collagen (see Woodhead-Galloway, Hukins & 
Wray, 1975). Second, near the origin, that is as k --+ 0 
(d--+ oo) the experimental intensity is much greater 
than that predicted by the model. This is a common 
feature of observations in simple liquids (see, for 
example, Mikaloj & Pings, 1967) and is a consequence 
of the long-range attractive part of the intermolecular 
potential (Woodhead-Galloway et al., 1968; Machin 
& Woodhead-Galloway, 1970). An understanding of 
the feature here would require a more complicated 

I(k) 

d=lO d(,6,) d= 2 5 

Fig. 4. Fit between equatorial trace of diffuse scatter for wet 
rat-tail tendon and calculated l(k). The position of the first 
peak has been fitted to the experimental results, and the 
best fit between the shapes of the two curves is with q -  0-608. 
The position of the peak implies that 2R (the diameter of 
the molecular hard co re )_ l -18  nm corresponding to a 
number  density of molecules per square nm of a section 
perpendicular to the axis of 0.55. As in the case of simple 
liquids, a hard-disc model gives no account of the scattering 
near the origin. 

. . . . . . . . . . . .  

Fig. 5. - - - -  S(k) experimental  for  wet rat-tail  tendon.  The 
curve was obta ined by dividing the experimental  l(k) by 
(Jl(k)/k) z where k=2nR/d  and 2 R = 1 . 1 8  nm. The curve 
near  the origin can be seen to be turn ing upwards  - a feature 
usually observed in s tructure factors for simple liquids and 
reflecting some tendency to cluster (due to long-range forces) 
above that  predicted by packing the hard  discs . . . . . . .  . 

potential-energy function than (2.4) involving an 
attractive part to describe cohesion between the mole- 
cules and it is proposed to leave the reporting of such 
calculations to a later paper. However, the point has 
been investigated to some extent. We have attempted 
to find an experimental S(k) from the observed scat- 
tering using expression (2.3). Since a value of 2R= 
1"18 nm fits some of the scattering curve, we divided 
the experimental intensity by [Jl(27rR/d)/(2zc/d)] 2 using 
2R-- 1-18 nm and the resulting structure factor is given 
in Fig. 5. This shows the deviation in intensity near the 
origin from that expected for a hard-disc model, and a 
comparison of S(k) with those obtained experimentally 
for the inert gases (Mikaloj & Pings, 1967) shows a 
qualitative similarity. 

It is worth mentioning that production of experi- 
mental structure factors is done routinely for atomic 
liquids. There is a serious drawback to doing it here. An 
atomic form factor (see International Tables for X-ray 
Crystallography) is a monotonically decreasing func- 
tion in reciprocal space, whereas a molecular form 
factor such as is being proposed here passes periodically 
through zero making the division of I(k) byfE(k) im- 
possible in certain regions. 

Further confirmation of the appropriateness of the 
theoretical treatment reported here is obtained by a 
consideration of the diffuse scattering in dry tendon 
and that observed in the other well-studied from of 
collagen, elastoidin. 

On drying, the first peak in the scattering form 
tendon moves out to a value of d of 1.06 nm. Since 
removal of water results in closer packing, it is inter- 
esting that this is the sort of number predicted at high 
values of the packing fraction in Table 1. 

In wet elastoidin the diffuse equatorial scattering is 
different from that observed in wet tendon. The first 
peak is not so well resolved (Wray, 1973; Woodhead- 
Galloway & Knight, 1975) and appears at d _ 2 . I  
nm [McGavin (1962) suggested that it is not 
resolved at all]. This is consistent with the calcula- 
tions reported here if the density in wet elastoidin is 
much lower than in wet tendon, say, r/~0-3, a point 
confirmed by the differences in negative staining ob- 
served in the electron microscopy of. tendon and 
elastoidin (Knight & Woodhead-Galloway, 1975). No 
estimate of the density of elastoidin seems to exist so 
the point cannot be checked, but the large value of d 
specifying the first peak in the intensity is consistent 
with the difficulty encountered in its resolution. 

Are the molecular diameter and packing fraction 
obtained on the basis of the analysis of wet tendon 
consistent with other observations? The value of 2R = 
1.18 nm is a little lower than that suggested by Wood- 
head-Galloway, Hukins & Wray to explain the ordered 
phase in collagen. On the basis of the indexing of the 
discrete reflexions in the diffraction pattern they argued 
that the intermolecular spacing must be close to 1.23 
nm. The agreement is good. More refined calculations 
will be required to decide how good the true agreement 
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is. Using the value of 2 R =  1.18 nm and r/=0.608 we 
may obtain an estimate of the number density of 
molecules in tendon which is the only useful measure of 
density for a system having both protein and water. 
The predicted number density is 0.55 molecules nm -2 
of cross section. Katz & Li (1973) suggested that the 
density of collagen in wet tendon is 1.14 molecules 
gm -1 of collagen which may be converted into a 
number density if the molecular weight of the collagen 
molecule and the axial arrangement of molecules are 
known. The molecular weight is about 300 000, and 
the suggestion of Hodge & Petruska (1963) is widely 
accepted as a model for the axially projected structure. 
The calculated experimental number density no turns 
out to be 0.6 molecules nm -2, again in good agree- 
ment with that predicted here. The number density is 
much higher and the intermolcular distance much 
lower than suggested by the microfibril model of col- 
lagen (Smith, 1968; Miller & Parry, 1973). 

Little more can be achieved with the calculations as 
they stand. To go any further two things are needed: 
first, some sort of attractive potential function must 
be introduced to account for the deviation from the 
hard-disc models (see Woodhead-Galloway, 1968, for 
an account of the problem in liquids), and second, to 
cover situations such as that in dry tendon where the 
packing fraction is much higher than it is in wet, an 
extended series (or a better method) must be obtained. 

J. W. G. gratefully acknowledges the award of the 
Guinness Fellowship at New College, Oxford and the 
Sir Henry Royce Fellowship in the Rheumatology 
Department, University of Manchester, during the 
tenures of which this research was carried out. 

References 

BERNAL, J. D. (1964). Proc. Roy. Soc. A280, 299-322. 
BLAISIE, J. K. & WORTHINGTON, C. R. (1969). J. 34ol. Biol. 

39, 417-439. 

BURGE, R. E. (1965). In Structure and Function of Connective 
and Skeletal Tissue, edited by S. FITTON JACKSON, R. D. 
HARKNESS, S. M. PARTRIDGE t~ G. R. TRISTAM, pp. 2-7. 
London: Butterworth. 

FRASER, R. D. B., MACRAE, T. P., MILLER, A. & Suzurd, E. 
(1964). J. MoL Biol. 9, 250-252. 

HODGE, A. J. & PETRUSKA, J. A. (1963). Aspects of Protein 
Structure. edited by G. N. RAMACHANDRAN, pp. 289-300. 
New York: Academic Press. 

HOSEMAN, R., DREISSIG, W. & NEMETSCHEK, Tt-I. (1974). 3. 
Mol. Biol. 83, 275-280. 

KATZ, E. P. & LI, S. T. (1973). J. Mol. Biol. 73, 351-369. 
KNIGHT, D. P. & WOODHEAD-GALLOWAY, J. (1975). In 

preparation. 
LEBOWITZ, J. L. & PERCUS, J. (1966). Phys. Rev. 144, 151. 
MACHIN, P. A. • WOODHEAD-GALLOWAY, J. (1970). J. Phys. 

C3, 2216-2222. 
MACroN, P. A. & WOODHEAD-GALLOWAY, J. (1975). Mol. 

Phys. Submitted. 
MCGAvIN, S. (1962). J. Mol. Biol. 5, 275. 
MIKALOJ, M. & PINGS, C. J. (1967). J. Chem. Phys. 46, 1401. 
MILLER, A. & PARRY, D. A. D. (1973). J. MoL Biol. pp. 

437-439. 
NEMETSCHEK, TH. & HOSEMAN, R. (1973). Kolloid Z. Pol. 

251, 1044. 
NEVILLE, A. C. &LUKE, B. M. (1971). J. Cell. Sci. 8, 93-109. 
NEVILLE, A. C., PARRY, D. A. D. & WOODHEAD-GALLOWAY, 

J. (1976). J. Cell. Sci. In the press. 
ORNSTEIN, L. S. & ZERNIKE, F. (1914). Proc. Acad. Sci. 

Amsterdam, 17, 793. 
PERCUS, J. K. & YEVICK, G. J. (1958). Phys. Rev. 110, 1. 
ROWLINSON, J. S. (1964). Mol. Phys. 7, 593-595. 
SALPETRE, E. E. (1958). Ann. Phys. New York, 5, 183-223. 
SMITH, J. W. (1968). Nature, Lond., 219, 157-158. 
THIELE, E. (1963). J. Chem. Phys. 39, 474. 
WERTHEIM, M. S. (1963). Phys. Rev. Lett. 10, 321. 
WOODHEAD-GALLOWAY, J. (1968). Ph.D. Thesis. Univ. of 

Sheffield. 
WOODHEAD-GALLOWAY, J., GASKELL, T. & MARCH, N. H. 

(1968). J. Phys. C, 1, 271. 
WOODHEAD-GALLOWAY, J., HUKINS, D. W. L. & WRAY, J. S. 

(1975). Biochem. Biophys. Res. Commun. 64, 1237-1244. 
WOODHEAD-GALLOWAY, J. & KNIGHT, D. P. (1975). Proc. 

Roy. Soc. B submitted. 
WRAY, J. S. (1973). D.Phil. Thesis. Univ. of Oxford. 

i ~ i i i i ( i i : i ~ i ! i i i ~ i ~  ¸ ...... : i : i  ¸¸¸¸ • * 


